A posteriori error estimates for Webster's equation in wave propagation
نویسندگان
چکیده
منابع مشابه
A posteriori $ L^2(L^2)$-error estimates with the new version of streamline diffusion method for the wave equation
In this article, we study the new streamline diffusion finite element for treating the linear second order hyperbolic initial-boundary value problem. We prove a posteriori $ L^2(L^2)$ and error estimates for this method under minimal regularity hypothesis. Test problem of an application of the wave equation in the laser is presented to verify the efficiency and accuracy of the method.
متن کاملa posteriori $ l^2(l^2)$-error estimates with the new version of streamline diffusion method for the wave equation
in this article, we study the new streamline diffusion finite element for treating the linear second order hyperbolic initial-boundary value problem. we prove a posteriori $ l^2(l^2)$ and error estimates for this method under minimal regularity hypothesis. test problem of an application of the wave equation in the laser is presented to verify the efficiency and accuracy of the method.
متن کاملEquivalent a posteriori error estimates for spectral element solutions of constrained optimal control problem in one dimension
In this paper, we study spectral element approximation for a constrained optimal control problem in one dimension. The equivalent a posteriori error estimators are derived for the control, the state and the adjoint state approximation. Such estimators can be used to construct adaptive spectral elements for the control problems.
متن کاملOn A Posteriori Error Estimates
Consider a sequence {xn}n—Q in a normed space X converging to some x* £ X. It is shown that the sequence satisfies a condition of the type ||x* -x„|| < oi||xn xn_¡\\ for some constant a and every n > 1, if the associated null sequence {e„}„=q, en = x* — xn, is uniformly decreasing in norm or if it is alternating with respect to any ordering whose cone of positive elements is acute.
متن کاملA Posteriori Error Estimates 3
This paper presents a posteriori error estimates for the hp{version of the boundary element method. We discuss two rst kind integral operator equations , namely Symm's integral equation and the integral equation with a hypersingular operator. The computable upper error bounds indicate an algorithm for the automatic hp{adaptive mesh{reenement. The eeciency of this method is shown by numerical ex...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2015
ISSN: 0022-247X
DOI: 10.1016/j.jmaa.2015.02.074